This is a graph problem. Given is numCourses
(graph vertices) and and edge list. Each edge consists of a courses to be taken and a prerequisite for it. - here Ci is a course that requires you to complete the prerequisite Pi.
But in paradoxical situation like where a course is a prerequisite of another prerequisite represents a cycle. So, if there exists a cycle like this, you cannot complete all courses, so return False else return True.
1. We have a DFS function that checks is we have a cycle starting from every node
2. We will ensure to call this function on every n < numCourse.
3. DFS maintains a visited set relative to each new node.
3.1. Add every visited neighbour to the set.
3.2. If a neighbour is already in the set, a cycle has been detected.
There’s also another way to detect a cycle - it’s Topological Sort. A topo-sort is a sorting algorithm that is usually applied on dependency graphs - very much like this one where a course depends on another course as a pre-requisite.
A dependency graph is a Directed Acyclic Graph (DAG).
So, once we get out topological ordering and the number of nodes in our original graph vs this ordering is different - that means there’s a cycle somewhere.
Code:
Python (DFS)
Python (Topological Sort)
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
if not prerequisites: return True
adj = defaultdict(list)
indegree = [0] * (numCourses)
for _from, _to in prerequisites:
adj[_from].append(_to)
indegree[_to] += 1
queue = deque([i for i, y in enumerate(indegree) if y == 0])
topo = []
while queue:
cur = queue.pop()
topo.append(cur)
for n in adj[cur]:
indegree[n] -= 1
if indegree[n] == 0:
queue.appendleft(n)
return len(topo) == numCourses
Java (DFS)
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
var adjList = getAdjList(prerequisites,numCourses);
for (int i=0;i<numCourses;++i) {
Set<Integer> visited = new HashSet<>();
boolean validCourse = dfs(adjList,i,visited);
if (!validCourse) return false;
}
return true;
}
private Map<Integer, List<Integer>> getAdjList(int[][] prereq,int n) {
Map<Integer, List<Integer>> adj = new HashMap<>();
for (var p : prereq) {
int course = p[0], pre = p[1];
if (adj.containsKey(course)) {
adj.get(course).add(pre);
}
else {
List<Integer> neighbours = new ArrayList<>();
neighbours.add(pre);
adj.put(course, neighbours);
}
}
for (int i=0;i<n;++i) {
if (!adj.containsKey(i))
adj.put(i,new ArrayList<>());
}
return adj;
}
private boolean dfs(Map<Integer,List<Integer>> adj, int node, Set<Integer> visited) {
if (visited.contains(node)) return false;
if (adj.get(node).size()== 0) return true;
visited.add(node);
List<Integer> neighbours = adj.get(node);
visited.add(node);
for (Integer n : neighbours) {
var isValid = dfs(adj,n,visited);
if (!isValid) return false;
}
visited.remove(node);
adj.put(node, new ArrayList<>());
return true;
}
}
Big O Analysis
- Runtime
The runtime complexity here is
O(N)
as since we would visit all nodes atleast once. - Memory
The memory usage is
O(N)
since we use a set.
— A