It’s crucial that while offloading nodes to the list, we do an inorder()
traversal - as that would visit first the left side nodes, then the root and finally the right side nodes.
1382 Balance a Binary Search Tree uses the fundamental knowledge that you build in this problem. I recommend solving that too while you are on this one.
Code
Python3
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
def construct_tree(start: int, end: int) -> Optional[TreeNode]:
if start > end: return None
mid = (start + end) // 2
cur_root = TreeNode(nums[mid])
cur_root.left = construct_tree(start, mid - 1)
cur_root.right = construct_tree(mid + 1, end)
return cur_root
return construct_tree(0, len(nums)-1)
Go
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sortedArrayToBST(nums []int) *TreeNode {
return constructBST(0, len(nums)-1, nums)
}
func constructBST(left, right int, arr []int) *TreeNode {
if left > right {
return nil
}
mid := (left + right) / 2
root := &TreeNode{Val: arr[mid]}
root.Left = constructBST(left, mid - 1, arr)
root.Right = constructBST(mid + 1, right, arr)
return root
}
Big O Analysis
-
Runtime
The runtime complexity here is since we would have to visit all nodes in the array atleast once to construct the tree.
-
Memory
The memory usage is since we are creating a new
TreeNode
for every value in the array.
— A